Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variation in the leaf and root microbiome of sugar maple (Acer saccharum) at an elevational range limit.

Identifieur interne : 000090 ( Main/Exploration ); précédent : 000089; suivant : 000091

Variation in the leaf and root microbiome of sugar maple (Acer saccharum) at an elevational range limit.

Auteurs : Jessica Wallace [Canada] ; Isabelle Laforest-Lapointe [Canada] ; Steven W. Kembel [Canada]

Source :

RBID : pubmed:30128178

Abstract

Background

Bacteria, archaea, viruses and fungi live in various plant compartments including leaves and roots. These plant-associated microbial communities have many effects on host fitness and function. Global climate change is impacting plant species distributions, a phenomenon that will affect plant-microbe interactions both directly and indirectly. In order to predict plant responses to global climate change, it will be crucial to improve our understanding of plant-microbe interactions within and at the edge of plant species natural ranges. While microbes affect their hosts, in turn the plant's attributes and the surrounding environment drive the structure and assembly of the microbial communities themselves. However, the patterns and dynamics of these interactions and their causes are poorly understood.

Methods

In this study, we quantified the microbial communities of the leaves and roots of seedlings of the deciduous tree species sugar maple (

Results

The bacterial and fungal communities of

Discussion

We demonstrate that microbial communities associated with sugar maple seedlings at the edge of the species' elevational range differ from those within the natural range. Variation in microbial communities differed among plant components, suggesting the importance of each compartment's exposure to changes in biotic and abiotic conditions in determining variability in community structure. These findings provide a greater understanding of the ecological processes driving the structure and diversity of plant-associated microbial communities within and at the edge of a plant species range, and suggest the potential for biotic interactions between plants and their associated microbiota to influence the dynamics of plant range edge boundaries and responses to global change.


DOI: 10.7717/peerj.5293
PubMed: 30128178
PubMed Central: PMC6097496


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variation in the leaf and root microbiome of sugar maple (
<i>Acer saccharum</i>
) at an elevational range limit.</title>
<author>
<name sortKey="Wallace, Jessica" sort="Wallace, Jessica" uniqKey="Wallace J" first="Jessica" last="Wallace">Jessica Wallace</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Physiology and Pharmacology, and Pediatrics, University of Calgary, Calgary, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Departments of Physiology and Pharmacology, and Pediatrics, University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30128178</idno>
<idno type="pmid">30128178</idno>
<idno type="doi">10.7717/peerj.5293</idno>
<idno type="pmc">PMC6097496</idno>
<idno type="wicri:Area/Main/Corpus">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000097</idno>
<idno type="wicri:Area/Main/Curation">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000097</idno>
<idno type="wicri:Area/Main/Exploration">000097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Variation in the leaf and root microbiome of sugar maple (
<i>Acer saccharum</i>
) at an elevational range limit.</title>
<author>
<name sortKey="Wallace, Jessica" sort="Wallace, Jessica" uniqKey="Wallace J" first="Jessica" last="Wallace">Jessica Wallace</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Physiology and Pharmacology, and Pediatrics, University of Calgary, Calgary, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Departments of Physiology and Pharmacology, and Pediatrics, University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<affiliation wicri:level="4">
<nlm:affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec</wicri:regionArea>
<orgName type="university">Université du Québec à Montréal</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>Background</b>
</p>
<p>Bacteria, archaea, viruses and fungi live in various plant compartments including leaves and roots. These plant-associated microbial communities have many effects on host fitness and function. Global climate change is impacting plant species distributions, a phenomenon that will affect plant-microbe interactions both directly and indirectly. In order to predict plant responses to global climate change, it will be crucial to improve our understanding of plant-microbe interactions within and at the edge of plant species natural ranges. While microbes affect their hosts, in turn the plant's attributes and the surrounding environment drive the structure and assembly of the microbial communities themselves. However, the patterns and dynamics of these interactions and their causes are poorly understood.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Methods</b>
</p>
<p>In this study, we quantified the microbial communities of the leaves and roots of seedlings of the deciduous tree species sugar maple (</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Results</b>
</p>
<p>The bacterial and fungal communities of </p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>Discussion</b>
</p>
<p>We demonstrate that microbial communities associated with sugar maple seedlings at the edge of the species' elevational range differ from those within the natural range. Variation in microbial communities differed among plant components, suggesting the importance of each compartment's exposure to changes in biotic and abiotic conditions in determining variability in community structure. These findings provide a greater understanding of the ecological processes driving the structure and diversity of plant-associated microbial communities within and at the edge of a plant species range, and suggest the potential for biotic interactions between plants and their associated microbiota to influence the dynamics of plant range edge boundaries and responses to global change.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30128178</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Variation in the leaf and root microbiome of sugar maple (
<i>Acer saccharum</i>
) at an elevational range limit.</ArticleTitle>
<Pagination>
<MedlinePgn>e5293</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.5293</ELocationID>
<Abstract>
<AbstractText Label="Background" NlmCategory="UNASSIGNED">Bacteria, archaea, viruses and fungi live in various plant compartments including leaves and roots. These plant-associated microbial communities have many effects on host fitness and function. Global climate change is impacting plant species distributions, a phenomenon that will affect plant-microbe interactions both directly and indirectly. In order to predict plant responses to global climate change, it will be crucial to improve our understanding of plant-microbe interactions within and at the edge of plant species natural ranges. While microbes affect their hosts, in turn the plant's attributes and the surrounding environment drive the structure and assembly of the microbial communities themselves. However, the patterns and dynamics of these interactions and their causes are poorly understood.</AbstractText>
<AbstractText Label="Methods" NlmCategory="UNASSIGNED">In this study, we quantified the microbial communities of the leaves and roots of seedlings of the deciduous tree species sugar maple (
<i>Acer saccharum</i>
Marshall) within its natural range and at the species' elevational range limit at Mont-Mégantic, Quebec. Using high-throughput DNA sequencing, we quantified the bacterial and fungal community structure in four plant compartments: the epiphytes and endophytes of leaves and roots. We also quantified endophytic fungal communities in roots.</AbstractText>
<AbstractText Label="Results" NlmCategory="UNASSIGNED">The bacterial and fungal communities of
<i>A. saccharum</i>
seedlings differ across elevational range limits for all four plant compartments. Distinct microbial communities colonize each compartment, although the microbial communities inside a plant's structure (endophytes) were found to be a subset of the communities found outside the plant's structure (epiphytes). Plant-associated bacterial communities were dominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes while the main fungal taxa present were Ascomycota.</AbstractText>
<AbstractText Label="Discussion" NlmCategory="UNASSIGNED">We demonstrate that microbial communities associated with sugar maple seedlings at the edge of the species' elevational range differ from those within the natural range. Variation in microbial communities differed among plant components, suggesting the importance of each compartment's exposure to changes in biotic and abiotic conditions in determining variability in community structure. These findings provide a greater understanding of the ecological processes driving the structure and diversity of plant-associated microbial communities within and at the edge of a plant species range, and suggest the potential for biotic interactions between plants and their associated microbiota to influence the dynamics of plant range edge boundaries and responses to global change.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Wallace</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Laforest-Lapointe</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Departments of Physiology and Pharmacology, and Pediatrics, University of Calgary, Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kembel</LastName>
<ForeName>Steven W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Département des sciences biologiques, Université du Québec à Montréal, Montréal, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.5860092.v1</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Endophyte</Keyword>
<Keyword MajorTopicYN="N">Environmental gradient</Keyword>
<Keyword MajorTopicYN="N">Epiphyte</Keyword>
<Keyword MajorTopicYN="N">Forest ecology</Keyword>
<Keyword MajorTopicYN="N">Microbial ecology</Keyword>
<Keyword MajorTopicYN="N">Phyllosphere</Keyword>
<Keyword MajorTopicYN="N">Plant-microbe interactions</Keyword>
<Keyword MajorTopicYN="N">Range limit</Keyword>
<Keyword MajorTopicYN="N">Rhizosphere</Keyword>
<Keyword MajorTopicYN="N">Sugar maple</Keyword>
</KeywordList>
<CoiStatement>The authors declare there are no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30128178</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.5293</ArticleId>
<ArticleId IdType="pii">5293</ArticleId>
<ArticleId IdType="pmc">PMC6097496</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2011 Jun 24;12(6):R60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21702898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13186-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16926146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Aug 21;349(6250):860-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Jul 18;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28720730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jul 12;7:12151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Jul 12;365(1549):2025-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Mar 1;30(5):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24142950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Nov 7;281(1794):20141779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22454494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2016 Jun 18;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27316353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 06;9(5):e96928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24800821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):510-519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22934891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Oct 18;449(7164):804-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Dec;11(12):2691-2704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28753209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 1;546(7656):145-147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28538736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:807-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Dec;20(6):642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 27;332(6033):1097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 06;115(6):E1157-E1165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Dec;8(12):2445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2014 Oct;68(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Sep;79(17):5112-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Dec 17;528(7582):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26633631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Aug 07;7:371</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000 Sep;38:145-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 30;312(5782):1917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 23;543(7646):513-518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28297714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(1):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23534863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Oct 26;5(10):e15406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21048977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Apr;69(4):1875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 1;26(11):1463-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:565-589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28645232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 16;8(10):e76382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):844-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22758207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Mar;5(3):235-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23457551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2014 Feb 24;2(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24558975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Sep;54(9):2281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jan 22;20(2):289-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Nov-Dec;103(6):1184-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2003 May;45(4):353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12704563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Feb;25(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2011 Apr;92(4):797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21661542</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
<li>Québec</li>
</region>
<settlement>
<li>Calgary</li>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
<li>Université du Québec à Montréal</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Québec">
<name sortKey="Wallace, Jessica" sort="Wallace, Jessica" uniqKey="Wallace J" first="Jessica" last="Wallace">Jessica Wallace</name>
</region>
<name sortKey="Kembel, Steven W" sort="Kembel, Steven W" uniqKey="Kembel S" first="Steven W" last="Kembel">Steven W. Kembel</name>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
<name sortKey="Laforest Lapointe, Isabelle" sort="Laforest Lapointe, Isabelle" uniqKey="Laforest Lapointe I" first="Isabelle" last="Laforest-Lapointe">Isabelle Laforest-Lapointe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30128178
   |texte=   Variation in the leaf and root microbiome of sugar maple (Acer saccharum) at an elevational range limit.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30128178" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020